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1. Introduction

On most glaciers and ice sheet outlets the majority of motion is due to basal sliding. The importance of water at the bed in controlling basal sliding is well established, with in-
creased sliding generally related to high basal water pressure, but the details of the interactions between the ice and water systems has not received much study when there
Is two-way coupling between the systems.
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We explore feedbacks between subglacial hydrology and ice dynamics using a coupled model of two-dimensional subglacial hydrology and three-dimensional, higher-order

ice dynamics within the Community Ice Sheet Model.
Schoof, C. (2005), The effect of cavitation on glacier sliding, Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences, 461(2055), 609-627.

2. MOdeI FOI'm U |atI0n The model couples models for distributed drainage, channelized drainage, and ice dynamics.
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3. Test Case & Experiment Setup 4. Results - Distributed Drainage only

The coupled model is spun-up to steady-state with no external forcing

We use an idealized mountain glacier test case. We first assess the strenath of feedbacks hetween hvdrology and ice dynamics without allowing a channel to form.
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S g att=0 8 =10 AN g roralltimes channelization Finally, we repeat the experiments in section 4 but allow a single channel to form if the channelization threshold is reached.
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7. Conclusions & Implications

Sliding Law Parameters
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- * Sliding-opening is a persistent negative feedback to sliding in the coupled system.
= e * However, channelization terminates speedup more quickly.
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