

A Community Emissions Data System: More Timely Emissions Data With Uncertainty

STEVEN J. SMITH
Joint Global Change Research Institute
College Park, MD

DOE Climate Modeling Principal Investigator Meeting

May 12, 2014 Potomac, MD

Outline

An idea that grew out of our experience producing historical emissions for the RCP/CMIP5 process several years ago.

Background

Motivation

Goals

Flexible, Community Data System

Overview/Approach

CMIP6 Timing

Summary

Goals:

Emissions with the same standards of timeliness, openness, and uncertainty quantification as other key model inputs.

Motivation

Gridded emissions of aerosol (BC, OC) and aerosol precursor compounds (SO₂, NO_x, NH₃, CH₄, CO, NMVOC) are key inputs for aerosol research and Earth System Models

 Needed for historical and future simulations, validation/comparisons with observations, historical attribution, and uncertainty quantification

The current historical dataset used by GCMs/ESMs (Lamarque et al. 2010) was a major advance in terms of consistency and completeness. This data, however, has a number of shortcomings.

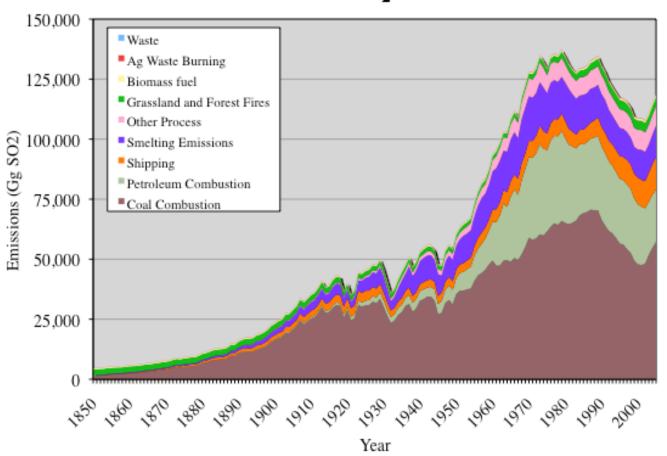
- Only extends to 2000 with coarse temporal resolution (10-years)
- Time series for many of the species formed by combining different data sets leading to inconsistencies
- No comprehensive uncertainty analysis provided (available only for SO₂ Smith et al. 2011 and earlier BC/OC datasets Bond et al. 2007)
- Underlying driver data not made available with emissions data set
- Methodology not consistent across emission species
- Process was not designed to be repeatable and easily updated

Goals of a New Global Emissions Data System Pacific Northwest

Proudly Operated by Battelle Since 196

Scientific Research Support

- Regular updates of anthropogenic emissions (SO₂, BC, NO_x, CH₄, etc.)
- Consistent extrapolation over time (prevent spurious discontinuities)
- Consistent with country-level inventories (where desired/appropriate)
- Annual resolution with regular updates
- Facilitate greater temporal (seasonal) and spatial (e.g. US, China, Russia, sub-country) detail
- Transparent emission results (drivers + assumptions -> emissions)
- Facilitate cross-country comparison (EF consistency, trends)


Enable Scientific Advances

- Uncertainty analysis (X 3!)
- Short-Lived Climate Forcer Research
- GCM Validation and Uncertainty Quantification
- Near-term climate prediction and analysis

SO2 Emissions

Global SO₂ Emissions

Annual estimates at country level from 1850-2005 using updated inventories, mass-balance, and driver data.

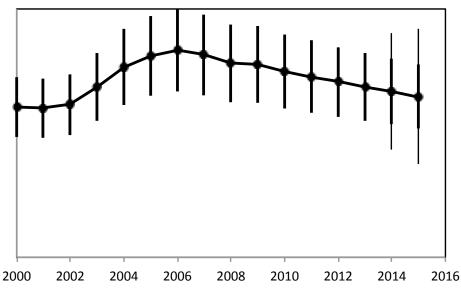
Gridded emissions every 10-years for RCP scenarios.

Smith et al (2011)

Fairly monotonic increase from 1950-1970

A number of global and regional features

World wars, great depression, collapse of FSU, recent trends in China


Goals of a New Emissions Data System

Instead of this

Produce This

A COMMUNITY EMISSIONS DATA SYSTEM

Providing Data for Modelers

Key Characteristics

- Annual data: can therefore provide more up-to-date information
- Country, sector, fuel (to extent possible), season, gridded
- Provide uncertainty estimates as automatic part of process!

What is Possible?

- Preliminary OECD country estimates available from 2 years prior (additional uncertainty of ~10-20%).
- Lag for developing country estimates is larger (up to ~5 years or more)
- Preliminary estimates up to previous full year (Klimont et al 2013)
 - Using preliminary, not-sectoral, energy data
 - Extrapolation of emissions factor trends
 - These most recent years will generally be more uncertain than estimates from 5-10 years before present

Emissions Data System Overview

Overview

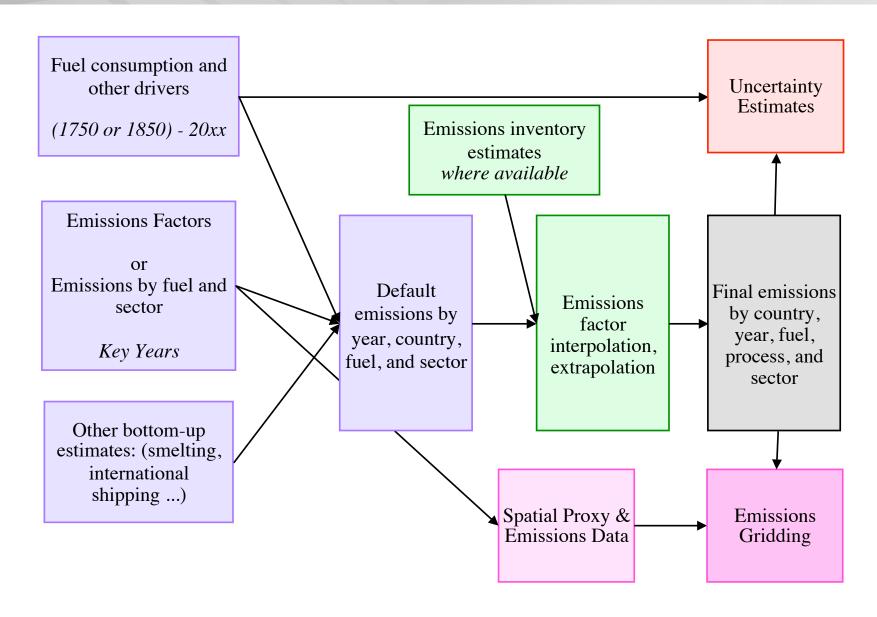
- Complementary to existing efforts
 - Bring together and extend existing information
- Open source code and (where possible) input data
- Annual updates of emissions
- Tool useful for emissions emissions research more broadly (uncertainty, regional emissions, etc.)

Approach

- Develop in the R open-source platform
- Focused on anthropogenic emissions (not open burning)
- Methodologies from Smith et al. (2011) & Klimont et al. (2013)

Uncertainty Estimates

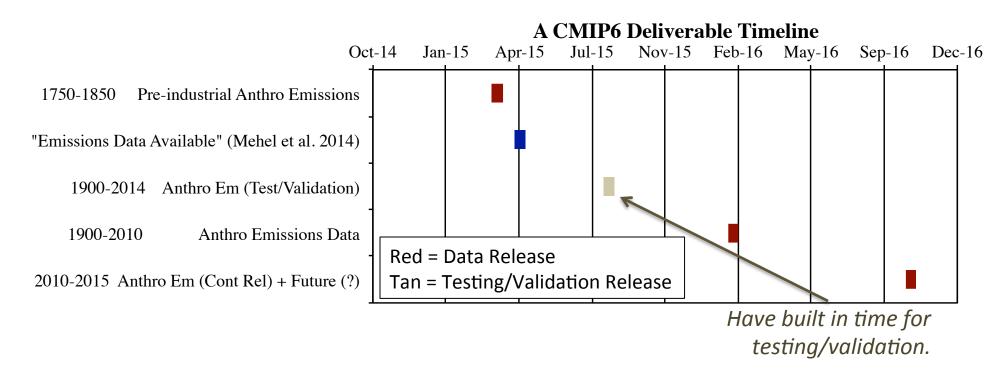
Overall Approach


- All bottom-up emission uncertainty estimates contain a substantial element of expert judgment
- Guide assumptions with literature & comparisons between inventories
- Reduce dimensionality by a "tiered" approach to group assumptions
 Otherwise: ~10 sectors X 200+ countries X 5 fuels X ~10 emissions
- Consider correlations across sectors and countries
- Result: consistent uncertainty across emissions

Uncertainty For Most Recent Years

- It is critical that emissions for recent years are coupled with uncertainty estimates
- The additional uncertainty in the most recent years can be rigorously assessed by applying the extension methodologies to past data
 Although "past uncertainty does not guarantee future uncertainty"

Emissions Estimation System



CMIP5 Timing

New (higher resolution & seasonal) pre-industrial emissions could be made available by Spring 2015.

A tested, gridded data set for the industrial era could be made available Spring 2016.

Summary

We propose an open-source emissions data system that can:

- Produce up-to-date anthropogenic aerosol and aerosol precursor emissions estimates
- Open data processes for community buy-in and verification
- Annual (& monthly) emission estimates in order to 1) capture timing of regional trends and 2) to provide as up-to-date estimates as possible
- Provide the uncertainty estimates needed for optimal use of data and for climate model UQ research
- Build on existing efforts (GAINS, EDGAR, REAS, country-level inventories) to provide data products and analysis needed for: modeling & climate/air quality work, and advance emissions estimation science.
- Publish methodology and results in peer-reviewed literature
- As an open source system, other groups can add/modify code and data

END